DP-100 Designing and Implementing a Data Science solution on Azure

Opi kuinka teet modernia koneoppimista Azuressa Machine Learning Designerilla (ilman koodia) ja Jupyter Notebookeilla!

2288,00 
+ alv./VAT
PRO-käyttäjille
0 €
Lue lisää

Pahoittelemme mutta tiedossa ei ole seuraavia kurssipäiviä.
Ole hyvä ja ole yhteydessä myyntiin: 0207 571 650 tai asiakaspalvelu@eduhouse.fi

PRO Skills

Oppiminen on matka!

Ostamalla tämän koulutuksen saat lisäksi jatkuvan oppimisen PRO Skills -palvelun käyttöösi. Kun ilmoittaudut vähintään 1-2 kk ennen koulutuksen alkamista, ehdit tarvittaessa opiskella perusteet ja perehtyä johdattaviin oppisisältöihin.

  • Microsoft Fundamentals valmennusohjelmat
  • Virtuaaliset täsmäkoulutukset
  • Jatkuvasti päivittyvä videokirjasto itseopiskeluun
  • Ota haltuun tekoäly, pilvipalvelut, softakehitys ja monet muut teknologiat
  • Learning Coach, kouluttajat ja osaajaverkosto käytettävissäsi

Ostaessasi tämän koulutuksen sitoudut samalla Sovelto PRO Skills jatkuvan oppimisen palvelun tilaukseen jatkuvaveloitteisena. Lue lisää: Tilaus- ja toimistusehdot

Video: PRO Skills Tai tutustu palveluun 

Awesome. I Have It.

Your couch. It is mine.

I'm a cool paragraph that lives inside of an even cooler modal. Wins!

DP-100 Designing and Implementing a Data Science solution on Azure

Opi kuinka teet koneoppimista Azuressa

Tässä koulutuksessa käydään läpi uudet tavat tehdä Machine Learning malleja Azuressa ilman koodausta Machine Learning Designerilla, sekä koodamalla Jupyter Notebookeilla ja Visual Studio Codella.

Koulutuksessa käydään läpi koko ML Pipeline (ML Ops): Datan käsittely, laskentaympäristön pystyttäminen (virtuaalikoneklusteri), algoritimien automatisoidusta valinta, hyperparametrien virittäminen, tuotantoon siirto, monitorointi jne. Siis käytännössä koko ketju alusta loppuun modernin koneoppimisen toteuttamiseen pilvessä Azure-ympäristössä.

Koulutus edellyttää Python-kielen perusteiden sekä Machine Learning -perusteiden tuntemusta.

Tämän koulutuksen käyneiden työnimikkeet ovat olleet mm. Data Scientist, Data Engineer, Data Analyst, IT-Architect, IT-Speacialist ja Applications Specialist.

 

Module 1: Introduction to Azure Machine Learning

In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace.

Lessons

  • Getting Started with Azure Machine Learning
  • Azure Machine Learning Tools

Lab : Creating an Azure Machine Learning Workspace

Lab : Working with Azure Machine Learning Tools

Module 2: No-Code Machine Learning with Designer

This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume.

Lessons

  • Training Models with Designer
  • Publishing Models with Designer

Lab : Creating a Training Pipeline with the Azure ML Designer

Lab : Deploying a Service with the Azure ML Designer

Module 3: Running Experiments and Training Models

In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models.

Lessons

  • Introduction to Experiments
  • Training and Registering Models

Lab : Running ExperimentsLab : Training and Registering Models

Module 4: Working with Data

Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments.

Lessons

  • Working with Datastores
  • Working with Datasets

Lab : Working with Datastores

Lab : Working with Datasets

Module 5: Compute Contexts

One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you’ll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs.

Lessons

  • Working with Environments
  • Working with Compute Targets

Lab : Working with Environments

Lab : Working with Compute Targets

Module 6: Orchestrating Operations with Pipelines

Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it’s time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you’ll explore how to define and run them in this module.

Lessons

  • Introduction to Pipelines
  • Publishing and Running Pipelines

Lab : Creating a Pipeline

Lab : Publishing a Pipeline

Module 7: Deploying and Consuming Models

Models are designed to help decision making through predictions, so they’re only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing.

Lessons

  • Real-time Inferencing
  • Batch Inferencing

Lab : Creating a Real-time Inferencing Service

Lab : Creating a Batch Inferencing Service

Module 8: Training Optimal Models

By this stage of the course, you’ve learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you’ll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data.

Lessons

  • Hyperparameter Tuning
  • Automated Machine Learning

Lab : Tuning Hyperparameters

Lab : Using Automated Machine Learning

Module 9: Interpreting Models

Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It’s increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model’s behavior. This module describes how you can interpret models to explain how feature importance determines their predictions.

Lessons

  • Introduction to Model Interpretation
  • using Model Explainers

Lab : Reviewing Automated Machine Learning Explanations

Lab : Interpreting Models

Module 10: Monitoring Models

After a model has been deployed, it’s important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data.

Lessons

  • Monitoring Models with Application Insights
  • Monitoring Data Drift

Lab : Monitoring a Model with Application Insights

Lab : Monitoring Data Drift

 

 

Paikkoja jäljellä:
Ei paikkarajoitusta
2288,00  + alv./VAT

Vastuuhenkilö


Pekka Korhonen

Pekka Korhonen

Pekka Korhonen on tunnettu SQL Server-, Azure Data Platform, Data Science ja Analyst -tekniikoiden asiantuntija, arkkitehti, kouluttaja ja konsultti. Hänelle on kertynyt kokemusta kolmisenkymmentä vuotta. Soveltossa Pekka toimii senior-konsulttina ja partnerina. Pekka on suorittanut harvinaisen SQL Server Master -sertifikaatin, joita on maailmassa vain noin 150 kpl. Pidettyjä kursseja Pekalle on kertynyt jo yli tuhat!

SQL Server Master Certified, Azure Data Engineer, Data Scientist ja Data Analyst Associate, MCT